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Cer ta in  ca se s  of nonsteady motion of a dropping c o m p r e s s i b l e  liquid with different  laws of f r i c -  
t ion in conduits (in pa r t i cu la r ,  in main oil pipelines) are  cons idered .  Resul ts  are p resen ted  of 
a solution of a num ber  of p rob lems  of uns teady motion of a dropping liquid in pipes with a square  
law of r e s i s t ance  and for  r e g i m e s  c h a r a c t e r i s t i c  of hydraul ica l ly  smooth  pipes ,  obtained n u m e r -  
ical ly  by the method of finite d i f fe rences  (method of nets) .  A compar i son  is made to r e su l t s  ob-  
ta ined by l inear iz ing  the t e r m  containing the square - l aw fr ic t ion according to a previous  [1] t e ch -  
nique, Deviations of the p a r a m e t e r s  of nonsteady flows for  given laws of r e s i s t ance  are studied. 

We will cons ider  a s y s t e m  of equations for  one-d imens iona l  nonsteady motion of a dropping compres s ib l e  
liquid in pipes under  a previous  [1] formulat ion,  

O(pw) o. ~' 0 �9 I ~  ~ = 0 ,  O ~ x ~ L ,  t:>O, (1) 
ot + ~-z (P + gw~) + ~ pu~ lwl = , c, ~ W + ox 

where p, p, and w are  c r o s s - s e c t i o n a l l y  averaged  p r e s s u r e ,  density,  and liquid flow ra te ,  k is the hydraul ic  
r e s i s t a n c e  coefficient ,  D is pipeline d iamete r ,  x is a coordinate  along the pipe axis,  t is a t ime  var iab le ,  L 
is the length of the pipeline section,  c = ~ i s  the speed of sound in the liquid, where K = K f / [ l + a l ( K f / E ) ]  
is the reduced compres s ib i l i t y  modulus taking into account the e las t ic i ty  of the pipe wails ,  Kf is the compres--  
s ibi l i ty  modulus of the liquid, and a 1 is a d imens ion less  coefficient  depending on the shape of the c r o s s - s e c t i o n  
and the th ickness  of the wal ls .  

In the case  of thin walls a 1 =D/ao ,  where D is the in te r io r  pipe d iamete r ,  6 o is the th ickness  of the pipe 
wall,  E is Young's  modulus of the m a t e r i a l  of the pipe, and P0 is densi ty at a p r e s s u r e  P0. 

We propose  that  the dynamic equation of [1] be l inear ized  in the following way in o r d e r  to avoid difficulties 
in solving the s y s t e m  (1), due, in pa r t i cu la r ,  to the nonl inear i ty  of the t e r m  containing fr ic t ion in this equation, 

~ I,~| ~ ( ~ ' ~  p ~  = 2~p~, .  (2) 
2D-- ~'~ \2D lay 

Here  2a=~(w2+ 2wl)/3D and w I and w 2 are the ranges  of var ia t ion  of veloci ty  w in given nonsteady motion. 

The s y s t e m  of equations (1), l inear ized  in accordance with (2), will be used also to calculate  nonsteady 
flow of oil in main oil p ipel ines ,  though the flow reg ime  the re  co r r e sponds  to turbulent  flow in the zone of 
hydraul ica l ly  smooth pipes .  The t e r m  (~/Ox)/(pw 2) cha rac t e r i z ing  the var ia t ion  of the veloci ty  head throughout 
the length of the pipe is usual ly  d i s regarded  in the dynamics  equation, i .e. ,  we cons ider  in place of Eq. (1) the 
l inear  s y s t e m  [11 

0 (pw) Op 
c)----i-- + -~x + 2apw = O; (3) 

1 ~p 0(pw) ___0. 
c ~ Ot -}- ox 
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Numer ica l  solution on the B~SM-6 compute r  of a number  of p rob l ems  of nonsteady flow of a liquid 
were  obtained to e s t i m a t e  the e r r o r  a r i s ing  in this s impl i f ica t ion of the initial  s y s t e m  of equations.  These 
equations were  found based on the s y s t e m  of equations (1) within the zone cha rac t e r i z ed  by square - l aw r e -  
s i s tance  and for  turbulent  flow of dropping liquids in the zone of hydraul ica l ly  smooth  pipes,  at which ~ = 
0.3164/Re ~ (Blasius zone). These  numer i ca l  solutions were  compa red  to the solution of Eqs.  (3), l i nea r -  
ized in accordance  with [1] and also numer i ca l l y  obtained on a compute r .  The dependence of liquid densi ty 
on p r e s s u r e  was a s sumed  to follow the Hooke law, 

p = p o  (1_ k P--Po'l 
-x-T-f 1. 

The difference of p r e s s u r e  P -P0  was a s sumed  to be sma l l  in compar i son  with E and Kf. We assumed a 
s t a t ionary  dis tr ibut ion of p r e s s u r e  and ve loc i ty  along the pipeline as the initial  conditions, 

-. p(x) =Po- -  (Po--pL)X; w(x) = w o = const ( O ~ x ~ L ) ,  

where  P0 and PL are  p r e s s u r e  at the front  and end of the pipe, r e spec t ive ly .  
ditions were  considered:  

w(O, t ) : f l  , p(L, t)=/~; 

p(O, t)=/~, p(L, t)=]~. 

The method of nets was used to numer i ca l ly  solve the s y s t e m s  of equations (1) and (3) with initial 
and boundary conditions of the type of Eqs.  (4)-(6). The cha rac t e r i s t i c  f o r m  of Eqs.  (1) was used  in the 
n u m e r i c a l  calculat ion,  

ap Op [.aw aw ] 
a-7 + (w *+_ c)-~ + pc --~ + (w +__ c ) ~  = +- c~, 

(4) 

Two types of boundary con-  

(5) 

(6) 

(7) 

where  

pw lwl, 

and cor respondingly ,  for  the s y s t e m  (37, 

where  

r 

The following f in i te -d i f ference  scheme [2] was used to solve the s y s t e m  of equations (7): 

(Pi,k+l--Pl,h)/X +(W4-C)i,h(Pi+l,k+l--p~--l, k+l)/2h 

______(pc)~,~[(Wi,~+l--W~,k)h+(W• ) ] =Cr i : ] ,  2 . . . . .  N - - i ;  

(Po,~+l--Po,~.)/'~.(wo,h--c) (pl,h+ l--Po,~+ O/h--(9C)o,~ [(Wo,h+l --Wo,h )/'~ ~(Wo,k--C)(WI,~ + I--WO,~+ I)/h ]:--C~Po,h; 

(PN, k+I--P~v,k)/T+(WN,h +c)(pN, k+I--PN--I,h+I)/h+(pc)~,h 
x [(wN, h+l--u,N, ~)/~+(wN, h+C)(WN,~+~--WN--Lh+OIh]=c~Z~,h. 

(8) 

An analogous impl ic i t  d i f ference scheme was also used to solve the s y s t e m  of equations (8). The 
methods of solving s y s t e m s  of quas i l inea r  hyperbol ic  equations using the cha rac t e r i s t i c  f o r m  have been 
cons ide red  in [3]. 

The resu l t ing  c losed s y s t e m  of l inear  a lgebra ic  equations was solved by the pivot method, the sy s t ems  
of equations (7) and (8)being f i r s t  reduced to d imens ion less  f o r m  by the introduction of the va r i ab les  x = x / L ;  
P =P/P0; w =w/w0; and t =t/ t0,  where  t 0 = L / c .  

Resul ts  of calcula t ions  of nonsteady flow of a dropping liquid, for  which we may  assume in F.qs. (1) 
and (3) that  p=po=const prac t i ca l ly  without any e r r o r  [1], are p resen ted  as an example .  

The resu l t ing  numer ica l  solutions made stable and made to converge  by exper imenta l ly  checking the 
r ec t angu la r  net as the pi tches were  va r ied .  Calculat ions were  c a r r i e d  out under  the boundary  conditions 
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w(0, t)=2wo, p ( L ,  t)=pL; (9) 

u:(0, t)=3Wo, p (L, t)=pc; (10) 

p(0, t)=2po, p (L, t)=pL. (11) 

The values  of the init ial  p a r a m e t e r s  were  [4] L =109 kin, D =0.509 m, Po=32.25 �9 10 t k g / m  2, PL = 
2.61 �9 104 kg/m 2, w 0 =1 m/see,  c = 1100 m / s e c ,  *'s =0.0266, p = 88.8 kg" sec2 /m 4, and v = 0 . 2 5 "  104m2/sec, where 

v is k inemat ic  v i scos i ty .  

A compar i son  of the r e su l t s  of calculat ions of the l inear ized  s y s t e m  of equations (3) to solutions of 
the nonl inear  s y s t e m  of equations (1) for  squa re - l aw fr ic t ion and conditions cha r ac t e r i z ed  by hydraul ica l ly  
smooth  pipes is depicted in Figs.  1-4 [boundary conditions (9)] and in Figs.  5-8 [boundary conditions (11)], 
in which cu rves  1 co r r e spond  to the l inear ized  s y s t e m  of equat ions,  curves  2, to the zone of hydraul ica l ly  
smooth  pipes ,  and curves  3, to the zone of square - l aw fr ic t ion.  Figure  1 implies  that  the function w(x, t) 
at the s t a r t  of the in te rmedia te  p roce s s  (t'=0.3) sha rp ly  d e c r e a s e s  in magnitude on the segment  0 <x <0.5 
and then r ema i ns  p rac t i ca l ly  constant  and equal  to 0.5 w(0, t') (zone of hydraul ica l ly  smooth  pipes and zone 
of squa re - l aw  friction) or  0.25 w(0, t') ( l inearized equations).  Veloci ty constant ly i nc r ea se s ,  and the d iv e r -  
gence between the veloci ty  values for  different laws of fr ict ion d e c r e a s e s  af ter  subs tant ia l  per iods  of t ime .  

The in termedia te  p r o c e s s  c ea s e s  throughout all of w = 2w 0 when t '=11.7 for  the Blas ius  zone, ~ = 12.0 
for  the line a r ized  s y s t e m  of equations,  and t =15.0 for  the zone of squa re - l aw fr ic t ion.  

The var ia t ion  of p r e s s u r e  with r e spec t  to t ime  under  the boundary conditions (9) is depicted in Fig. 
2. P r e s s u r e  in the pipeline i nc rea se s  with t ime  and by t '=1.5 doubles at the front of the pipeline for  the zone 
of hydraul ica l ly  smooth  pipes and for  the squa re - l aw  fr ict ion and reaches  values  p(0, t ' )=2,74 for  the l in-  
e a r i z ed  s y s t e m  of equat ions.  The v e l o c i t y - t i m e  dis t r ibut ion for  th ree  pipeline c r o s s  sec t ions  is depicted 
in Fig, 3 under  the boundary conditions (9). Figure 4 impl ies  that the p r e s s u r e  throughout the ent i re  i n t e r -  
mediate  p r o c e s s ,  ca lcula ted using the l inear tzed  equations,  is s ignif icantly g r e a t e r  than for  the zone of 
hydraul ica l ly  smooth  pipes or  for  squa re - l aw fr ic t ion.  The var ia t ion  of the re la t ive  deviations of  ve loci ty  
and p r e s s u r e  with t ime  for  the l inear ized  equations is compa red  in Table 1 [boundary conditions (9)] to 
the case of squa re - l aw  fr ict ion and the reg ime of hydraul ica l ly  smooth  pipes .  The subscr ip t s  "l ~, " s ' ,  and 
"B",  r e f e r  to the case  of a l inear ized  sys tem,  squa re - l aw fr ict ion,  and continuous fr ict ion (Blasius zone). 

The nature of the var ia t ion  of veloci ty  and p r e s s u r e  are as before with an inc rease  in dis turbing ac -  
tion [boundary conditions (10)], though the t ime  of the in te rmedia te  p r o c e s s  i nc rea se s  (t =13.5 for  the 
Blas ius  zone, t =13.8 for  the l inear ized  s y s t em of equations and t '=19.5 for  square - law frict ion).  

Resul ts  of n u m e r i c a l  calculat ions of nonsteady flows under  the boundary conditions (9) and (1_0) have 
demons t r a t ed  that the l inear ized  s y s t e m  of equations yields  unders ta ted  values of the veloci ty  (cf. Figs.  1 
and 3) and ove r s t a t ed  values of the p r e s s u r e  (cf. Figs.  2 and 4) in compar i son  with conditions cha rac t e r i zed  
by hydraul ica l ly  smooth pipes .  For  example ,  the max imal  re la t ive  deviations in veloci ty  under  the boundary 

* The speed of sound was given by , / - - ~ 0  =c =1080 m / s e c  under  the initial data we have assumed  [Kf = 
1.4 "108 k g / m  2 and E =2-  10 ~~ k g / m  2 (steel), and 5 =0.01 m]. The calculat ions used an expe r imen ta l ly  ob- 
ta ined [4] value c =1100 m / s e c  close to the above value.  
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TABLE 1 

o~ 
0,3 
0,6 
i,2 
2,t 
3,0 
6,0 

t2,0 

0 
0,3 
0,6 
i,2 
2,t 
3,0 
6,0 

12,0 

%! 

t ,00 
0,94 
1,29 
t ,49 
1,63 
1,74 
t ,92 
2,00 

0,77 
0,93 
1,22 
1,63 
2,09 
2,41 
2,97 
3,2i 

~S 

1,00 
1,4t 
t ,60 
1,70 
t,78 
t ,83 
1,93 
1,99 

0,77 
0,90 
1,08 
1,29 
t ,55 
1,75 
2,13 
2,38 

~0,25 

YB r'Ws 

1,00 0 , 0  
1,45 33,4 
t,65 19,4 
i,74 i2,4 
i,82 8,4 
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1,9':] 0,52 
2,0C 0,45 

"~=o,5 
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conditions (9) amounted to 5 1~=0.3=35.2, 6 I~'=0.3=52.3, and 5 I~=o.~=58 (in percent) ,  respect ively ,  for  the 
th ree  pipeline c ros s  sect ions (x =0.25, 0.5, and 0.75). The maximal  re la t ive  deviations increased and 
amounted to (in percent)  5 It=0.3 =39.2, and 6 It=o.3 =62.7, and 5 tt=o.s =67 under  the boundary conditions 
(3.2). 

The relative pressure deviations for the same pipeline cross sections at moment of time t= 9.0 were 
constant and were approximately 50-55%for the boundary conditions (9) (cf. Table i) and 45-50%for the 
boundary conditions (I0). The velocity-time distribution for the boundary conditions (11) are depicted in 
Fig. 7, which implies that the function ~(.~, tO at the start of the intermediate process sharply increases for 
the Blasius zone and square-law friction and decreases for the linearized system of equations. Velocity 
becomes constant at moment of time t'=3.0 for square'law friction [w(• t)=1.56] and for the Blasius zone 
[w(x, t)=1.67], while w(:~, t-)=0.62 for the linearized system at moment of time t =4.5. 

The pressure distribution relative to the pipeline length is depicted in Fig. 6 under the boundary con- 
ditions (11). Pressure in the pipeline increases with increasing time and at t=6.0 the intermediate process 
ceases for the regime of hydraulically smooth pipes, at t =7.2 for square-law friction, and at'i=7.5 for the 
linearized system of equations. It should be noted that the pressures and velocities obtained using the lin- 
earized system of equations under the boundary conditions (ii) are below the corresponding values for the 
Blasius regime and for square-law friction. 

Our results imply that the linearized equations for nonsteady motion of a liquid in pipelines that we 
have used introduces a substantial error in determining the pressure (45-55%) and velocity (40-70%). The 
maximal divergence of the corresponding results of the calculations using equations for the Blasius regime 
and for square-law friction is at most 10%for velocity and 12%for pressure. 
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